

SCINTILLATORS FOR HIGH TEMPERATURE PLASMA DIAGNOSTICS

L. Swiderski, A. Gojska, M. Grodzicka, S. Korolczuk, S. Mianowski, M. Moszynski, J. Rzadkiewicz, P. Sibczynski, A. Syntfeld-Kazuch, M. Szawlowski, T. Szczesniak, J. Szewinski, A. Szydlowski, I. Zychor

National Centre for Nuclear Research (NCBJ), 05-400 Otwock, Poland

Abstract

Gamma-ray measurements in fusion devices require detectors characterized by a good energy resolution, a relatively high detection efficiency for few MeV gamma-rays and a fast response time. Scintillators proposed for monitoring such gamma-rays observed in high temperature plasma fulfill most of requirements. In addition, they are rather resistant to neutron damage in comparison to, e.g. germanium detectors. Intense fast neutron yield expected during DT campaigns restricts considered materials to oxygen-free scintillators.

CeBr₃ scintillators were investigated with the aim to use them for gamma-ray diagnostics of high temperature fusion plasma. Basic scintillation properties like energy resolution and full energy peak detection efficiency were measured using spectrometry photomultipliers for light readout. The response of CeBr₃ scintillators was studied as a function of crystal volume between 0.5 cc and 350 cc. A comparison with well-known and used as reference halide scintillators is presented.

Measurements were performed at NCBJ using gamma-ray sources with energies up to few MeV, in particular PuBe and PuC. Analysis of background spectra, registered without an external radiation source, allowed one to evaluate an internal activity of the tested scintillators.

Background and intrinsic activity in CeBr₃ and LaBr₃

- Both CeBr₃ and LaBr₃ are contaminated with α-radioactive isotopes from actinides that manifest their presence in energy spectrum between 1.5 MeV and 2.5 MeV.
- LaBr₃ is contaminated also with naturally occurring ¹³⁸La that decays by EC or β⁻, giving rise to a peak at about 1470 keV (1436 keV γ-ray + X-ray cascade) and a continuum above 789 keV (789 keV γ-ray + e⁻).

100000																											
	•					I	T	I	T			ļ	•	420			T	T		T	T	Ţ	ľ			•	T
E	¹³⁸ La β ⁻ decay						40 K				¹³⁸ La EC decay										²⁰⁸ TI						

Experimental details

Tested scintillators were coupled to spectroscopy photomultiplier tubes (PMT) selected for optimal light collection, according to the size of invesigated samples.

The list of tested scintillators included:

- CeBr₃ (cuboid 10 x 10 x 5 mm³)
- CeBr₃ (cylinder 1" diameter x 1" height)
- CeBr₃ (cylinder 3" diameter x 3" height), see Fig. 1
- LaBr₃ (cylinder 1" diameter x 1" height)
- LaBr₃ (cylinder 3" diameter x 3" height)
- Nal:TI (cylinder 1" diameter x 1" height)
- CsI:TI (cylinder 1" diameter x 1" height)

Analogue spectroscopy modules (preamplifier, shaping amplifier and multichannel analyzer) were used to record the spectra for γ -ray sources (¹³⁷Cs, ¹⁵²Eu, PuBe, PuC).

Fig. 1 CeBr₃ scintillator (3"x3") coupled to R6233 PMT.

<u>CeBr₃ detection efficiency vs. size of the scintillator</u>

 Full energy peak (FEP) detection efficiency was measured for three CeBr₃ samples in energy range between 122 keV and 6.13 MeV (see Fig. 2).

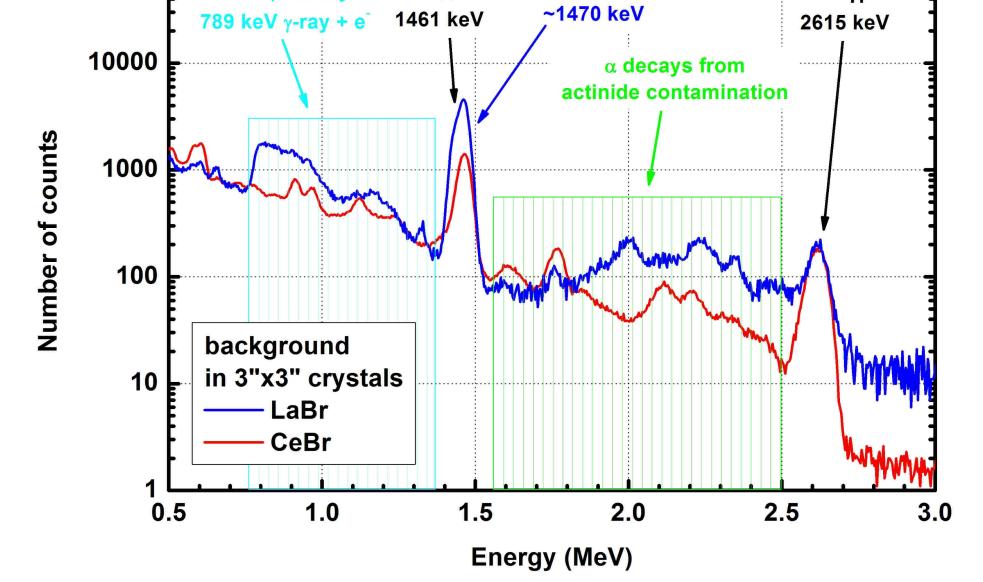


Fig. 4 Response of different size CeBr₃ scintillators to background.

Comparison of CeBr₃ and LaBr₃ with alkali halide scintillators

- FEP detection efficiency is presented in Fig. 5 for CeBr₃, LaBr₃, CsI:TI and NaI:TI samples in energy range between 122 keV and 6.13 MeV. Due to close atomic number and density
 - CeBr₃, LaBr₃ and CsI:TI show very similar values of detection efficiency.
- Nal:Tl is a factor of 2-3 less efficient for gamma ray detection at high energy range.
- Energy resolution was measured for all tested samples in energy range between 122 keV and 6.13 MeV (see Fig. 6). LaBr₃ shows superior energy resolution, however at high energies the difference is not large.
- The energy resolution measured at 4.44 MeV does not follow the trend for all scintillators due to Doppler broadening of γ-rays emitted from PuBe source.
- The results for 4.44 MeV and 6.13 MeV γ-rays are not available for the smallest sample as interaction probability is too low to produce a FEP in this scintillator within acceptable acquisition time.

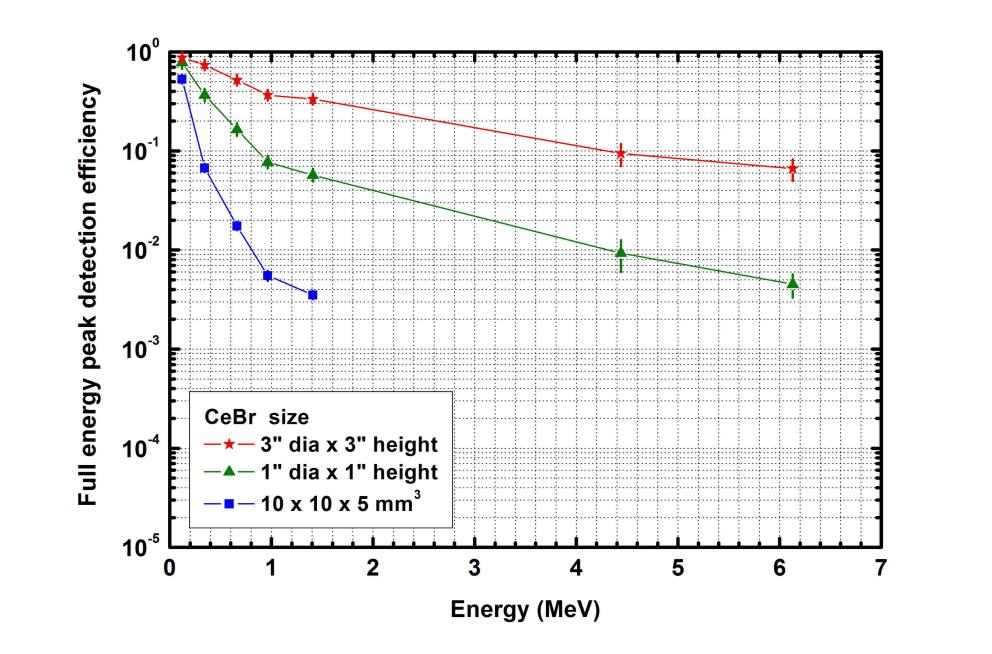
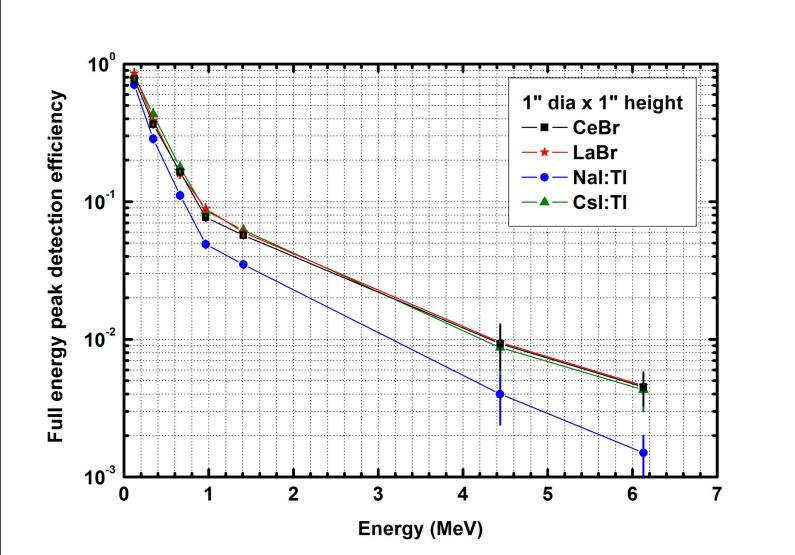
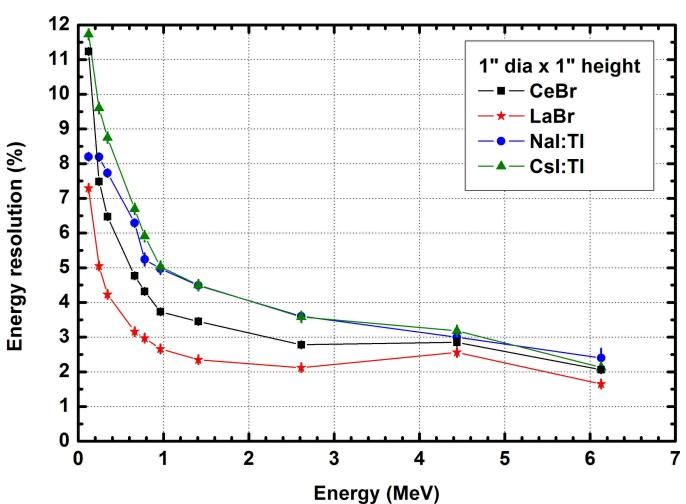




Fig. 2 FEP detection efficiency of CeBr₃ crystals of different

size.

- Energy spectra recorded by 1"x1" and 3"x3" CeBr₃ cylindrical scintillators irradiated with PuBe source are presented in Fig. 3.
- High energy γ -rays are detected via e^+e^- pair production in the crystals.
- Beside FEP at 4.44 MeV, single escape peak (SEP) and double escape peak (DEP) are observed at 3.93 MeV and 3.42 MeV, respsectively.
- The difference in intensities between FEP, SEP and DEP is caused by different escape

Fig. 5

FEP detection efficiency measured between 122 keV and 6.1 MeV for 1" diameter and 1" height cylindrical shape CeBr₃, LaBr₃, NaI:TI and CsI:TI scintillators.

Fig. 6

Energy resolution measured between 122 keV and 6.1 MeV for 1" diameter and 1" height cylindrical shape CeBr₃, LaBr₃, NaI:TI and CsI:TI scintillators.

Conclusions

- High full energy peak detection efficiency of CeBr₃ and LaBr₃ and good energy resolution makes those scintillators good candidates for detection of high energy γ-rays, especially comparing with the standard low density scintillator like NaI:TI.
- High detection efficiency combined with fast response (scintillation decay times ~15-25 ns) makes CeBr₃ and LaBr₃ well suited for measurements where high counting rates are

probabilities of 511 keV γ -rays produced during absorption of high energy γ -ray.

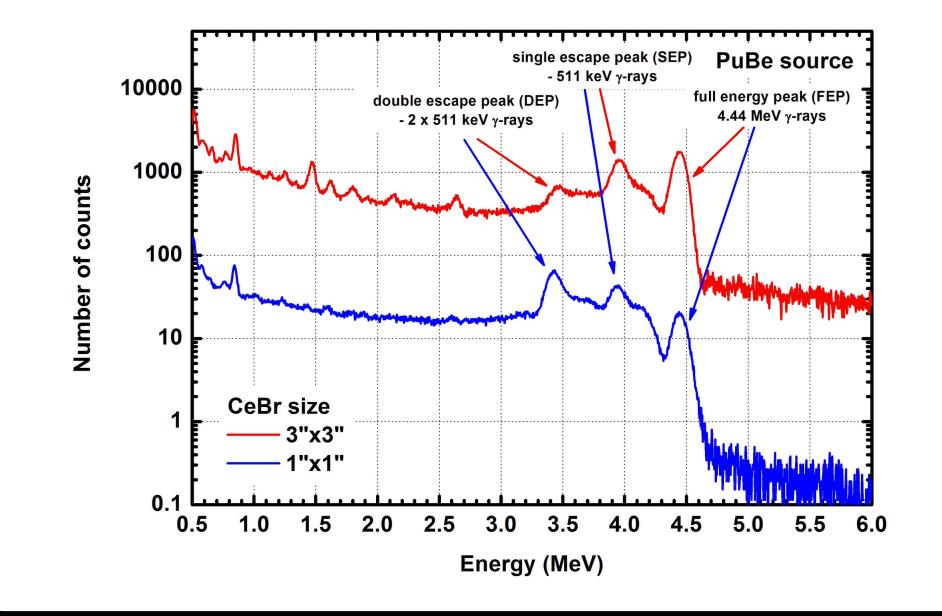


Fig. 3

Response of different size CeBr₃ scintillators to PuBe source

emitting 4.44 MeV γ -rays.

Single and double 511 keV escape peaks are also observed along with full energy peaks.

Spectra were normalized according to acquisition time and γ -ray flux at the detector surface. expected. In contrast, CsI:TI demonstrates much longer decay time (~1 μ s) that excludes this material from measurements in intense flux of radiation.

- CeBr₃ has advantage over LaBr₃ exhibiting substantially lower internal radioactivity below
 1.5 MeV due to lack of radioactive ¹³⁸La.
- Detection of high energy γ-rays is possible with sufficently large samples. For example, 1"x1" CeBr₃ scintillator has full energy peak detection efficiency for 4.44 MeV γ-rays at the level of 10⁻². However, single and double escape peaks may also be used as fingerprints for detection of high energy γ-rays.

Acknowledgement

This scientific work was partly supported by Polish Ministry of Science and Higher Education within the framework of the scientific financial resources in the years 2015-2017 allocated for the realization of the international co-financed project.

